

Dubai International School-Al Quoz Science Department (Grades 9-12) Curriculum Annual Plan

Grade: _12_____ Subject: _Honor Chemistry _____ 2024-2025

TERM-I

NGSS Standards and EMSAT requirements	Unit	Topics	Learning Objectives	Week No. & Date	No. of Lessons
	Diagnostic Test + General Basic Science	Diagnostic Revision + Scientific Methods	-Examine the steps of scientific methods theoretically by applying them using a specific experiment.	W1: 26/8 TILL 30/8	4
NGSS: HS-PS2-6	Chapter 11: Solutions	11.1 The Composition of Solutions	-Distinguish between solute	W2: 2/9 TILL 6/9	4
Emsat: Chemical bond 6a.Students know the atoms and molecules in	Book Introduction to Chemistry Richard Bauer, 5e	11.2 The Solution Process	and solvent -Distinguish between electrolyte and non electrolyte solution		
liquids move in a random pattern relative to one another because		11.3 Factors That Affect Solubility	-Discover the rules used to predict the solubility of ionic salts		

the intermolecular forces are too weak to hold the atoms or molecules in a solid form. -Chemical Thermodynamics 7b. Students know chemical processes can either release (exothermic) or absorb (endothermic) thermal energy.			-Distinguish between miscible and non miscible liquids -Explain hydration Process -Discuss and explain the factors that affect solubility		
NGSS: HS-PS2-5	Chapter 11: Solutions	11.4 Measuring Concentrations of	-Calculate solubility	W3: 9/9 TILL 13/9	4
Chemical Bonds 2d. Students know the atoms and molecules in liquids move in a random pattern relative to one another because the intermolecular	Book Introduction to Chemistry Richard Bauer, 5e	Solutions	-Distinguish between unsaturated, saturated and supersaturated solution -Calculate percent by mass, by volume -Calculate Density -Calculate molarity and molality and distinguish between these 2 terms		

	1			1	
forces are too					
weak to hold the					
atoms or					
molecules in a					
solid form.					
NGSS:		11.5 Quantities for	-Explain and discover the	W4:	4
HS-PS2-5	Chapter 11: Solutions	Reactions That Occur	reactions that conduct to	16/9 TILL	
		in Aqueous Solution	precipitation formation	20/9	
EMSAT			F F		
	Book				
Chemical	Introduction to Chemistry		-Explain the neutralization		
Thermodynamics	Richard Bauer, 5e		reaction		
7b. Students	Michard Bader, 36		reaction		
know chemical			-Calculate the concentration		
			of the unknown substance		
processes can			or the unknown substance		
either release					
(exothermic) or					
absorb					
(endothermic)					
thermal energy.					
	Chapter 11: Solutions	11.6 Colligative		W5:	4
NGSS:		<u>Properties</u>	-Explain the concept of	23/9 TILL	
			colligative properties	27/9	
HS-PS2-6	Book				
	Introduction to Chemistry		-Analyze the concept of		
EMSAT:	Richard Bauer, 5e		osmotic pressure		
	, , ,		p and p		
Investigation and			-Explain and discuss these		
Experimentation			points, lowering vapor		
g. Recognize the			pressure ,boiling point		
usefulness and			elevation, freezing point		
limitations of			· • • • • • • • • • • • • • • • • • • •		
			depression		
models and					

theories as			
scientific			
representations			
of reality. k.			
Recognize the			
cumulative			
nature of			
scientific			
evidence. Atomic			
and Molecular			
Structure e.			
Students know			
the nucleus of			
the atom is much			
smaller than the			
atom yet			
contains most of			
its mass. h.*			
Students know			
the experimental			
basis for			
Thomson's			
discovery of the			
electron,			
Rutherford's			
nuclear atom,			
Millikan's oil drop			
experiment, and			
Einstein's			
explanation of			
the photoelectric			
effect. i.*			
Students know			

the experimental basis for the development of the quantum theory of atomic structure and the historical importance of the Bohr model of the atom NGSS: HS-PS2-6	Chapter 12: Reaction Rates and Chemical Equilibrium	• 12.1 Reaction Rates	-Explain the idea of Reaction rate	W6: 30/9 TILL 4/10	4
j.* Students know that spectral lines are the result of transitions of electrons between energy levels and that these lines correspond to photons with a frequency related to the energy spacing between levels by using Planck's	Book Introduction to Chemistry Richard Bauer, 5e	• 12.2 Collision Theory	-Discover the necessary conditions for a good collision -Distinguish between exothermic and endothermic reaction	7, 10	

relationship (E=hv) Conservation of Matter and Stoichiometry 3 b. Students know the quantity one mole is set by defining one mole of carbon 12 atoms to have a mass of exactly 12 grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). NGSS: HS-PS1-1. EMSAT: Atomic and	Chapter 12: Reaction Rates and Chemical Equilibrium Book Introduction to Chemistry	12.3 Conditions That Affect Reaction Rates	-Explain the concept of activation energy and activated complex -Analyze energetic diagram	W7: 7/10 TILL 11/10	
Atomic and Molecular Structure 1. a. Students know	Richard Bauer, 5e		-Discover the conditions that affect reaction rates		
how to relate the position of an element in the			-Write rate law		

			1	
periodic table to		-		
its atomic				
number and				
atomic mass. b.				
Students know				
how to use the				
periodic table to				
identify metals,				
semimetals,				
nonmetals, and				
halogens. c.				
Students know				
how to use the				
periodic table to				
identify alkali				
metals, alkaline				
earth metals and				
transition metals,				
trends in				
ionization				
energy, electro-				
negativity, and				
the relative sizes				
of ions and				
atoms. d.				
Students know				
how to use the				
periodic table to				
determine the				
number of				
electrons				
available for				
bonding. e.				

Students know the nucleus of the atom is much smaller than the atom yet contains most of its mass.					
NGSS: HS-PS1-2. EMSAT: Students know how to use the periodic table to identify the lanthanide, actinide, and transactinide elements and know that the transuranium elements were synthesized and identified in laboratory experiments through the use of nuclear accelerators. g.* Students know how to relate the	Chapter 12: Reaction Rates and Chemical Equilibrium Book Introduction to Chemistry Richard Bauer, 5e	• 12.4 Chemical Equilibrium	Explain the concept of chemical equilibrium -Distinguish between the rate of forward and reverse reactions	W8: 14/10 TILL 18/10	

position of an		I			
element in the					
periodic table to					
'					
its quantum					
electron					
configuration					
and to its					
reactivity with					
other elements					
in the table. 2.					
g.* Students					
know how					
electronegativity					
and ionization					
energy relate to					
bond formation					
NGSS:	Chapter 12: Reaction	12.5 The Equilibrium	-Write the equilibrium	W9:	
	Rates and Chemical	Constant	constant expression	21/10 TILL	
HS-PS1-2.	<u>Equilibrium</u>			25/10	
EMSAT:	_		-Calculate equilibrium		
	Book		constant for different		
know that the	Introduction to Chemistry		reactions		
transuranium	Richard Bauer, 5e				
elements were			-Use equilibrium constant to		
synthesized and			predict the direction of the		
identified in			reaction		
laboratory					
experiments					
through the use			-Calculate K for		
of nuclear			heterogeneous equilibrium		
accelerators. g.*					
Students know					

how to relate the position of an element in the periodic table to its quantum electron configuration and to its reactivity with other elements		END OF QUARTER 1			
NGSS: HS-PS1-4	Chapter 12: Reaction Rates and Chemical Equilibrium	12.6 Le Chatelier's Principle	-Explain Le Chatelier principle	W10: 28/10 TILL	4
ПЗ-РЗТ-4	Equilibrium		-Discover the factors that	1/11	
EMSAT:			make system under stress	.,	
	Book		-		
1 d. Students	Introduction to Chemistry		-Discover the different ways		
know how to use	Richard Bauer, 5e		used to relieve the stress of		
the periodic table			the system		
to determine the					
number of					
electrons					
available for					
bonding. g.* Students know					
how to relate the					
position of an					
element in the					
periodic table to					
its quantum					
electron					
configuration					

and to its reactivity with other elements in the table.		
		<u> </u>

NGSS Standards and EMSAT requirements	Unit	Topic	Learning Objectives	Week No. & Date	No. of Lesson s
NGSS:	Chapter 13: Acids and	13.1 What Are Acids and		W11:	4
HS-PS1-4	<u>Bases</u>	Bases?	-Distinguish between acid and base substances	4/11 TILL 8/11	
EMSAT: 2a. Students	Book Introduction to Chemistry Richard Bauer, 5e		-Explain the different theories used to distinguish between acid and base		
know atoms combine to form molecules by sharing electrons to form covalent			-Discover the conjugate acid -base of different substances		

or metallic					
bonds or by					
exchanging					
electrons to					
form ionic					
bonds. c.					
Students know					
salt crystals,					
such as NaCl,					
are repeating					
patterns of					
positive and					
negative ions					
held together					
by					
electrostatic					
attraction. g.*					
Students know					
how					
electronegativi					
ty and					
ionization					
energy relate					
to bond					
formation.					
NGSS:	Chapter 13: Acids and	13.2 Strong and Weak	-Distinguish between weak	W12:	4
	<u>Bases</u>	Acids and Bases	and strong acid ionization		
HS-PS1-3.				11/11 TILL	
			-Distinguish between weak	15/11	
EMSAT:	Book		and strong base ionization		
	Introduction to Chemistry				
1c. Students	Richard Bauer, 5e				
know how to					

use the			
periodic table			
to identify			
alkali metals,			
alkaline earth			
metals and			
transition			
metals, trends			
in ionization			
energy,			
electronegativi			
ty, and the			
relative sizes			
of ions and			
atoms. 2 a.			
Students know			
atoms			
combine to			
form			
molecules by			
sharing			
electrons to			
form covalent			
or metallic			
bonds or by			
exchanging			
electrons to			
form ionic			
bonds. b.			
Students know			
sharing electrons to form covalent or metallic bonds or by exchanging electrons to form ionic bonds. b.			

Lewis dot structures. NGSS: Chapter 13: Acids and Bases HS-PS1-5. HS-PS1-7 Book Introduction to Chemistry Richard Bauer, 5e Books Introduction to Chemistry Richard Bauer, 5e 13.3 Relative Strengths of Weak Acids -Explain the significance of acid ionization constant -Discover the properties of polyprotic acids -Analyze the behavior of polyprotic acids in water	Structures. Chapter 13: Acids and Bases 13.3 Relative Strengths of Weak Acids 18/11 TILL
---	--

and logarithmic functions. 3 b. Students know the quantity one mole is set by defining one mole of carbon 12 atoms to have a mass of exactly 12 grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a molecular		Г	<u></u>	_	
functions. 3 b. Students know the quantity one mole is set by defining one mole of carbon 12 atoms to have a mass of exactly 12 grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a					
Students know the quantity one mole is set by defining one mole of carbon 12 atoms to have a mass of exactly 12 grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a					
the quantity one mole is set by defining one mole of carbon 12 atoms to have a mass of exactly 12 grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a					
one mole is set by defining one mole of carbon 12 atoms to have a mass of exactly 12 grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a					
set by defining one mole of carbon 12 atoms to have a mass of exactly 12 grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a	the quantity				
one mole of carbon 12 atoms to have a mass of exactly 12 grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a					
carbon 12 atoms to have a mass of exactly 12 grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a	set by defining				
atoms to have a mass of exactly 12 grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a	one mole of				
a mass of exactly 12 grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a	carbon 12				
exactly 12 grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a	atoms to have				
grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a	a mass of				
grams. c. Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a	exactly 12				
Students know one mole equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a					
equals 6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a					
6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a	one mole				
6.02x1023 particles (atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a	equals				
(atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a	6.02x1023				
(atoms or molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a	particles				
molecules). d. Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a					
Students know how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a					
how to determine the molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a					
molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a					
molar mass of a molecule from its chemical formula and a table of atomic masses and how to convert the mass of a	determine the				
from its chemical formula and a table of atomic masses and how to convert the mass of a	molar mass of				
from its chemical formula and a table of atomic masses and how to convert the mass of a	a molecule				
chemical formula and a table of atomic masses and how to convert the mass of a					
table of atomic masses and how to convert the mass of a	chemical				
table of atomic masses and how to convert the mass of a					
masses and how to convert the mass of a					
how to convert the mass of a					
the mass of a					
	molecular				

substance to moles, number of particles, or volume of gas at standard temperature and pressure					
	Chapter 13: Acids and Bases Book Introduction to Chemistry Richard Bauer, 5e	13.4 Acidic, Basic, and Neutral Solutions 13.5 The pH Scale	-Explain the significance of ion- product constant of water -Use ion product constant of water to distinguish between neutral, acidic and basic solution -Calculate the concentration of H3O+ and HO- in strong acid and base solution -Calculate PH -Calculate POH -Discover the relation	W14: 25/11 TILL 29/11	
NGSS: HS-PS1-5	Chapter 13: Acids and Bases	13.6 Buffered Solutions	-Explain the concept of Buffer solution	W15: 4/12 TILL 6/12	4

EMSAT: Students know how to describe chemical reactions by writing balanced	Book Introduction to Chemistry Richard Bauer, 5e		-Discover how a buffer system works		
equations.		Winter Decel			
		Winter Break	K		
NGSS: HS-PS1-5	Chapter 14: Oxidation- Reduction Reactions	14.1 What Is an Oxidation- Reduction	Distinguish between oxidation and reduction reaction	W16: 9/12 TILL 13/12	4
EMSAT: Students know how to describe chemical reactions by writing balanced equations.	Book Introduction to Chemistry Richard Bauer, 5e	 Reaction? 14.2 Oxidation Numbers 14.4 Balancing Simple Oxidation- Reduction Equations 	-Predict if the reaction is redox or not -Discover the rules used to assign oxidation number -Distinguish between single element and element in neutral compound or in a polyatomic ion	13/12	
NGSS: HS-PS1-7			- Use oxidation number to identify oxidation-reduction reaction		
EMSAT:					

		Balance simple and	
Students know		complex redox reactions in	
how to		acidic and in basic solution	
calculate the			
masses of			
reactants and			
products in a			
chemical			
reaction from			
the mass of			
one of the			
reactants or			
products and			
the relevant			
atomic			
masses. f.*			
Students know			
how to			
calculate			
percent yield			
in a chemical			
reaction. g.*			
Students know			
how to identify			
reactions that			
involve			
oxidation and			
reduction and			
how to			
balance			
oxidation-			
reduction			
reactions.			

NGSS:	Chapter 14: Oxidation-	•	4.6		W17:	4
11000.	Reduction Reactions	•	Electrochemistry	-Identify and explain the	6/1 TILL 10/1	-
HS-PS2-5	Troduction Troductions		Electrochemistry	component of voltaic cells	0/1 1122 10/1	
	Book			osmponom or voltare some		
EMSAT:	Introduction to Chemistry			-Explain electrolytic cell		
	Richard Bauer, 5e					
3 d. Students	, , , , ,					
know how to						
determine the						
molar mass of						
a molecule						
from its						
chemical						
formula and a						
table of atomic						
masses and						
how to convert						
the mass of a						
molecular						
substance to						
moles,						
number of						
particles, or						
volume of gas at standard						
temperature and pressure.						
4 a. Students						
know the						
random						
motion of						
molecules and						
their collisions						

Jan ZZ. Makeup	EXAIII					
Jan 13 TILL Jan 21: The final exam of Term 1 Jan 22: Makeup Exam						
W18 & W19:					4	
gases						
diffusion of						
explains the						
molecules						
motion of						
random						
know the						
b. Students						
pressure on that surface.						
observable						
create the						
with a surface						