

Dubai International Private School DIS, in partnership with parents and community, strives to prepare every

student to be digitally literate, a lifelong learner, and a productive citizen.

Dubai International School-Al Quoz

Science Department (Grades 9-12)

Curriculum Annual Plan

Grade: 12 Subject: AP Chemistry 2024-2025

Semester-I

Big Idea	Enduring Understanding (EU)	Unit	Торіс	Learning Objectives	Week No. & Date	No. of Less ons
				QUARTER- I		
			Diagnostic test	Revise the concept of naming chemical compounds, solutions, and gas laws.	W1: 26/8 TILL 30/8	5
			Introduction to AP Chemistry Framework and External Exam framework			
			AP Science Skills overview			
BIG IDEA 1	SPQ-1	Unit-1: Atomic Structure	1.1		W2: 2/9 TILL 6/9	5

BIG	The mole allows	and	Moles and Molar	Explain the quantitative relationship between the		
IDEA 2	different units to be compared	properties	Mass	mass spectrum of an element and the masses of the element's isotopes.		
			<mark>1.2</mark> Mass Spectroscopy of Elements	Calculate quantities of a substance or its relative number of particles using dimensional analysis and the mole concept.		
			1.3 Elemental Composition of Pure Substances	Explain the quantitative relationship between the elemental composition by mass and the empirical formula of a pure substance.		
BIG IDEA 1 BIG IDEA 2	SAP-1 Atoms and molecules can be identified by their electron distribution and energy.		1.4 Composition of Mixtures	Explain the relationship between the photoelectron spectrum of an atom or ion and: a. The electron configuration of the species. b. The interactions between the electrons and the nucleus.	W3: 9/9 TILL 13/9	5
			 1.5 Atomic Structure and Electron Configuration 1.6 Photoelectron Spectroscopy 	Represent the electron configuration of an element or ions of an element using the Aufbau principle.		

				Explain the quantitative relationship between the elemental composition by mass and the composition of substances in a mixture.		
BIG IDEA 1 BIG IDEA 2	SAP-1 Atoms and molecules can be identified by their electron distribution and energy.		1.7 Periodic Trends 1.8 Valence Electrons and Ionic Compounds	Explain the relationship between trends in atomic properties of elements and electronic structure and periodicity. Explain the relationship between trends in the reactivity of elements and periodicity.	W4: 16/9 TILL 20/9	5
BIG IDEA 2	Structure and Properties SAP	Unit 2: Molecular and Ionic Compound Structure and	2.1 Types of Chemical Bonds 2.2	Explain the relationship between the type of bonding and the properties of the elements participating in the bond. Represent the relationship between potential energy and	W5: 23/9 TILL 27/9	5
		Properties	Intramolecular Force and Potential Energy	distance between atoms, based on factors that influence the interaction strength.		
			2.3 Structure of Ionic Solids 2.4	Represent an ionic solid with a particulate model that is consistent with Coulomb's law and the properties of the constituent ions.		

			Structure of Metals and Alloys	Represent a metallic solid and/or alloy using a model to show essential characteristics of the structure and interactions present in the substance.		
BIG IDEA 2	Structure and Properties SAP		<mark>2.5</mark> Lewis Diagrams	Represent a molecule with a Lewis diagram.	W6: 30/9 TILL 4/10	5
			2.6 Resonance and Formal Charge 2.7 VSEPR and Bond Hybridization	Represent a molecule with a Lewis diagram that accounts for resonance between equivalent structures or that uses formal charge to select between nonequivalent structures. Based on the relationship between Lewis diagrams, VSEPR theory, bond orders, and bond polarities: a. Explain structural properties of molecules. b. Explain electron properties of molecules.		
BIG IDEA 1 BIG IDEA 2	SAP-7 Gas properties are explained macroscopically —using the relationships among pressure, volume, temperature, moles, gas constant—and	UNIT 3: Intermolec ular Forces and Properties	 3.1 Intermolecular Forces 3.2 Properties of Solids 	 Explain the relationship between the chemical structures of molecules and the relative strength of their intermolecular forces when: a. The molecules are of the same chemical species. b. The molecules are of two different chemical species. Explain the relationship among the macroscopic properties of a substance, the particulate-level structure of the substance, and the interactions between these particles. 	W7: 7/10 TILL 11/10	5

	molecularly by the motion of the gas.	<mark>3.3</mark> Solids, Liquids, and Gases	Represent the differences between solid, liquid, and gas phases using a particulatelevel model.		
		<mark>3.4</mark> Ideal Gas Law	Explain the relationship between the macroscopic properties of a sample of gas or mixture of gases using the ideal gas law.		
		<mark>3.5</mark> Kinetic Molecular Theory	Explain the relationship between the motion of particles and the macroscopic properties of gases with: a. The kinetic molecular theory (KMT). b. A particulate model. c. A graphical representation.		
BIG IDEA 1 BIG IDEA 2	SAP-7 Gas properties are explained macroscopically —using the	<mark>3.6</mark> Deviation from Ideal Gas Law	Explain the relationship among non-ideal behaviors of gases, interparticle forces, and/or volumes.	W8: 14/10 TILL 18/10	5
	relationships among pressure, volume, temperature, moles, gas	<mark>3.7</mark> Solutions and Mixtures	Calculate the number of solute particles, volume, or molarity of solutions.		
	moles, gas constant—and molecularly by the motion of the gas.	<mark>3.8</mark> Representations of Solutions	Using particulate models for mixtures: a. <mark>Represent</mark> interactions between components. b. Represent concentrations of components.		

		3.9 Separation of Solutions and Mixtures Chromatography	Explain the relationship between the solubility of ionic and molecular compounds in aqueous and nonaqueous solvents, and the intermolecular interactions between particles.		
BIG IDEA 1 BIG IDEA 2	SAP-7 Gas properties are explained macroscopically —using the relationships among pressure, volume, temperature, moles, gas constant—and molecularly by the motion of the gas.	 3.10 Solubility 3.11 Spectroscopy and the Electromagnetic Spectrum 3.12 Photoelectric Effect 3.13 	 Explain the relationship between the solubility of ionic and molecular compounds in aqueous and nonaqueous solvents, and the intermolecular interactions between particles. Explain the relationship between a region of the electromagnetic spectrum and the types of molecular or electronic transitions associated with that region. Explain the properties of an absorbed or emitted photon in relationship to an electronic transition in an atom or molecule. 	W9: 21/10 TILL 25/10	5
		Beer-Lambert Law	Explain the amount of light absorbed by a solution of molecules or ions in relationship to the concentration, path length, and molar absorptivity.		
			END OF QUARTER-I		

Big Idea	Enduring Understandin g (EU)	Unit	Торіс	Learning Objectives	Week No. & Date	No. of Less ons
				QUARTER- II		
BIG IDEA 1 & 3	TRA-2 A substance can change into another substance through different processes, and the change itself can be classified by the sort of processes.	Unit 4: Chemical reactions	 4.1 Introduction for Reactions 4.2 Net Ionic Equations 4.3 Representatio ns of Reactions 4.4 Physical and Chemical Changes 	Identifyevidence of chemical and physical changes in matter.Representchanges in matter with a balanced chemical or net ionic equation: a. For physical changes. b. For given information about the identity of the reactants and/or product. c. For ions in a given chemical reaction.Representa given chemical reaction or physical process with a consistent particulate model.Explainthe relationship between macroscopic characteristics and bond interactions for: a. Chemical processes. b. Physical processes.	W10: 28/10 TILL 1/11	5
			<mark>4.5</mark> Stoichiometry	Explain changes in the amounts of reactants and products based on the balanced reaction equation for a chemical process.		

			 4.6 Introduction to Titration 4.7 Types of Chemical Reactions 	Identify the equivalence point in a titration based on the amounts of the titrant and analyte, assuming the titration reaction goes to completion. Identify a reaction as acidbase, oxidation- reduction, or precipitation.	W11: 4/11 TILL 8/11	5
			 4.8 Introduction to Acid-Base Reactions 4.9 Oxidation- Reduction (Redox) Reactions 	Identify species as Brønsted-Lowry acids, bases, and/or conjugate acid-base pairs, based on proton-transfer involving those species. Represent a balanced redox reaction equation using half-reactions.		
BIG IDEA- 3	TRA-3 Some reactions happen quickly, while others happen more slowly and depend on reactant concentrations and temperature.	Unit 5: Reaction kinetics	5.1 Reaction Rates 5.2 Introduction to Rate Law	Represent experimental data with a consistent rate law expression. Identify the rate law expression of a chemical reaction using data that show how the	W12: 11/11 TILL 15/11	5

		<mark>5.3</mark> Concentratior Changes Over Time	<i>,</i>		
		<mark>5.4</mark> Elementary Reactions	Represent the activation energy and overall energy change in an elementary reaction using a reaction energy profile.		
BIG IDEA- 3	TRA-4 There is a relationship between the speed of a reaction and	<mark>5.5</mark> Collision Model	Identify the components of a reaction mechanism.	W13: 18/11 TILL 22/11	5
	the collision frequency of particle collisions TRA-5	<mark>5.6</mark> Reaction Energy Profil	Explain the two conditions necessary for chemical reactions to occur. e		
	Many chemical reactions occur through a series of elementary reactions.	<mark>5.7</mark> Introduction to Reaction Mechanisms	Identify the rate law for a reaction from a mechanism in which the first step is rate limiting. Relate the order of a reaction to the rate law		
		<mark>5.8</mark>	for the reaction. Explain and write rate laws for chemical reactions.		

			Reaction Mechanism and Rate Law			
BIG IDEA- 3	TRA-4 There is a relationship between the speed of a reaction and		<mark>5.9</mark> Steady-State Approximation	Identify the rate law for a reaction from a mechanism in which the first step is not rate limiting.	W14: 25/11 TILL 29/11	5
	the collision frequency. TRA-5 Many chemical reactions		<mark>5.10</mark> Multistep Reaction Energy Profile	Represent the activation energy and overall energy change in a multistep reaction with a reaction energy profile.		
	occur through a series of elementary reactions.		<mark>5.11</mark> Catalysis	Explain the relationship between the effect of a catalyst on a reaction and changes in the reaction mechanism.		
BIG IDEA 4	ENE-2 Changes in a substance's properties or change into a different substance requires an exchange of energy.	Unit 6: Thermodynamic s	 6.1 Endothermic and Exothermic Processes 6.2 Energy Diagrams 	Explain the relationship between experimental observations and energy changes associated with a chemical or physical transformation. Represent a chemical or physical transformation with an energy diagram.	W15: 4/12 TILL 6/12	5

			<mark>6.3</mark> Heat Transfer and Thermal Equilibrium	Explain the relationship between the transfer of thermal energy and molecular collisions.		
BIG IDEA 4	ENE-2 Changes in a substance's properties or change into a different substance requires an exchange of energy. ENE-3 The energy exchanged in a chemical transformation is required to break and form bonds.		 6.4 Heat Capacity and Calorimetry 6.5 Energy of Phase Changes 6.6 Introduction to Enthalpy of Reaction 	Calculate the heat q absorbed or released by a system undergoing heating/ cooling based on the amount of the substance, the heat capacity, and the change in temperature. Explain changes in the heat q absorbed or released by a system undergoing a phase transition based on the amount of the substance in moles and the molar enthalpy of the phase transition. Calculate the heat q absorbed or released by a system undergoing a chemical reaction in relationship to the amount of the reacting substance in moles and the molar enthalpy of reaction.	W16: 9/12 TILL 13/12	5
BIG IDEA 4	ENE-2 Changes in a substance's properties or change into a different	Unit 6: Thermodynamic s	WII <mark>6.7</mark> Bond Enthalpies	NTER BREAK Calculate the heat q absorbed or released by a system undergoing heating/ cooling based on the amount of the substance, the heat capacity, and the change in temperature.	W17: 6/1 TILL 10/1	5

	substance requires an exchange of energy.		<mark>6.8</mark> Enthalpy of Formation	Calculate the enthalpy change for a chemical or physical process based on the standard enthalpies of formation.		
	ENE-3 The energy exchanged in a chemical transformation is required to break and form bonds.		<mark>6.9</mark> Hess's Law	Represent a chemical or physical process as a sequence of steps. Explain enthalpy change, enthalpy of reaction, enthalpy of formation, and enthalpy of combustion.		
BIG IDEA 1&3	TRA-6 Some reactions can occur in both forward and reverse directions, sometimes proceeding in each direction simultaneous. TRA-7 A system at equilibrium depends on the relationships between concentrations ,	Unit 7: Equilibrium	 7.1 Introduction to Equilibrium 7.2 Direction of Reversible Reactions 7.3 Reaction Quotient and Equilibrium Constant 	 Provide reasoning to justify a claim using chemical principles or laws or using mathematical justification. Explain the relationship between the occurrence of a reversible chemical or physical process, and the establishment of equilibrium, to experimental observations. Relate the direction in which a reversible reaction proceeds to the relative rates of the forward and reverse reactions. 	W18: 13/1 TILL 17/1	5

	partial pressures of chemical species, and equilibrium constant <i>K</i> .	7.4 Calculating the Equilibrium Constant	 Represent the reaction quotient Qc or Qp, for a reversible reaction, and the corresponding equilibrium. Calculate Kc or Kp based on experimental observations of concentrations or pressures at equilibrium. Explain the relationship between the direction in which a reversible reaction proceeds and the relative rates of the forward and reverse reactions. 		
BIG IDEA 1 BIG IDEA 3	TRA-8Systems atequilibriumrespond toexternalstresses tooffset theeffect of	<mark>7.5</mark> Magnitude of the Equilibrium Constant	Explain the relationship between very large or very small values of K and the relative concentrations of chemical species at equilibrium.	20- 24/01/2024 (22/01/2023 LDI) (23- 26/01/2023 Revision) 24/01 1 st day	5
	the stress.	<mark>7.6</mark> Properties of the	Represent a multistep process with an overall equilibrium expression, using the constituent K expressions for each individual reaction.	of exams)	
		Equilibrium Constant <mark>7.7</mark>	Represent a system undergoing a reversible reaction with a particulate model.		

	Equilibrium	Identify the concentrations or partial pressures of chemical species at equilibrium based on the initial conditions and the equilibrium constant.			
END OF QUARTER-II					